Pierce's Disease
Research Updates

piercesdisease.cdfa.ca.gov

What is Pierce's Disease?

Pierce's Disease is a bacterial infection, which is spread by bugs that feed on grapevines, particularly the "glassy winged sharpshooter." Grapevines that become infected with PD can quickly become sick and die.

glassy-winged sharpshooter

Organic hydroperoxide resistance gene encodes a thiol-dependent peroxidase


  • Author(s): Alves, Simone; Cussiol, R.; Netto, L.; Oliveira, M.; Renato, J.;
  • Abstract: ohr (organic hydroperoxide resistance gene) is present in several species of bacteria, and its deletion renders cells specifically sensitive to organic peroxides. The goal of this work was to determine the biochemical function of Ohr from Xylella fastidiosa. All of the Ohr homologues possess two cysteine residues, one of them located in a VCP motif, which is also present in all of the proteins from the peroxiredoxin family. Therefore, we have investigated whether Ohr possesses thiol-dependent peroxidase activity. The ohr gene from X. fastidiosa was expressed in Escherichia coli, and the recombinant Ohr decomposed hydroperoxides in a dithiothreitol-dependent manner. Ohr was about twenty times more efficient to remove. organic hydroperoxides than to remove H2O2. This result is consistent with the organic hydroperoxide sensitivity of Deltaohr strains. The dependence of Ohr on thiol compounds was ascertained by glutamine synthetase protection assays. Approximately two thiol equivalents were consumed per peroxide removed indicating that Ohr catalyzes the following reaction: 2RSH + ROOH -- RSSR + ROH + H2O. Pretreatment of Ohr with N-ethyl maleimide and substitution of cysteine residues by serines inhibited this peroxidase activity indicating that both of the Ohr cysteines are important to the decomposition of peroxides. C125S still had a residual enzymatic activity indicating that Cys-61 is directly involved in peroxide removal. Monothiol compounds do not support the peroxidase activity of Ohr as well as thioredoxin from Saccharomyces cerevisaae and from Spirulina. Interestingly, dithiothreitol and dyhydrolipoic acid, which possess two sulfhydryl groups, do support the peroxidase activity of Ohr. Taken together our results unequivocally demonstrated that Ohr is a thiol-dependent peroxidase.
  • Publication Date: Mar 2003
  • Journal: Journal Of Biological Chemistry